Multi Label Spatial Semi Supervised Classification using Spatial Associative Rule Mining and Evolutionary Algorithms
نویسنده
چکیده
Multi-label spatial classification based on association rules with multi objective genetic algorithms (MOGA) enriched by semi supervised learning is proposed in this paper. It is to deal with multiple class labels problem. In this paper we adapt problem transformation for the multi label classification. We use hybrid evolutionary algorithm for the optimization in the generation of spatial association rules, which addresses single label. MOGA is used to combine the single labels into multi labels with the conflicting objectives predictive accuracy and comprehensibility. Semi supervised learning is done through the process of rule cover clustering. Finally associative classifier is built with a sorting mechanism. The algorithm is simulated and the results are compared with MOGA based associative classifier, which out performs the existing.
منابع مشابه
An Evolutionary Multi Label Classification using Associative Rule Mining for Spatial Preferences
Multi-label spatial classification based on association rules with Multi objective genetic algorithms (MOGA) is proposed to deal with multiple class labels problem which is hard to settle by existing methods. In this paper we adapt problem transformation for the Multi label classification. We use Hybrid evolutionary algorithm for the optimization in the generation of spatial association rules, ...
متن کاملClassification on Multi-label Dataset Using Rule Mining Technique
Most recent work has been focused on associative classification technique. Most research work of classification has been done on single label data. But it is not appropriate for some real world application like scene classification, bioinformatics, and text categorization. So that here we proposed multi label classification to solve the issues arise in single label classification. That is very ...
متن کاملA tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation
Associative-classification is a promising classification method based on association-rule mining. Significant amount of work has already been dedicated to the process of building a classifier based on association rules. However, relatively small amount of research has been performed in association-rule mining from multi-label data. In such data each example can belong, and thus should be classi...
متن کاملOptimization of Spatial Association Rule Mining using Hybrid Evolutionary algorithm
Spatial data refer to any data about objects that occupy real physical space. Attributes within spatial databases usually include spatial information. Spatial data refers to the numerical or categorical values of a function at different spatial locations. Spatial metadata refers to the descriptions of the spatial configuration. Application of classical association rule mining concepts to spatia...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011